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The coupling between topography, waves and currents in the surf zone may self-
organize to produce the formation of shore-transverse or shore-oblique sand bars on
an otherwise alongshore uniform beach. In the absence of shore-parallel bars, this has
been shown by previous studies of linear stability analysis, but is now extended to the
finite-amplitude regime. To this end, a nonlinear model coupling wave transformation
and breaking, a shallow-water equations solver, sediment transport and bed updating
is developed. The sediment flux consists of a stirring factor multiplied by the depth-
averaged current plus a downslope correction. It is found that the cross-shore profile
of the ratio of stirring factor to water depth together with the wave incidence angle
primarily determine the shape and the type of bars, either transverse or oblique to
the shore. In the latter case, they can open an acute angle against the current (up-
current oriented) or with the current (down-current oriented). At the initial stages of
development, both the intensity of the instability which is responsible for the formation
of the bars and the damping due to downslope transport grow at a similar rate with
bar amplitude, the former being somewhat stronger. As bars keep on growing, their
finite-amplitude shape either enhances downslope transport or weakens the instability
mechanism so that an equilibrium between both opposing tendencies occurs, leading
to a final saturated amplitude. The overall shape of the saturated bars in plan view
is similar to that of the small-amplitude ones. However, the final spacings may be
up to a factor of 2 larger and final celerities can also be about a factor of 2 smaller
or larger. In the case of alongshore migrating bars, the asymmetry of the longshore
sections, the lee being steeper than the stoss, is well reproduced. Complex dynamics
with merging and splitting of individual bars sometimes occur. Finally, in the case of
shore-normal incidence the rip currents in the troughs between the bars are jet-like
while the onshore return flow is wider and weaker as is observed in nature.

1. Introduction
The surf zone of many sandy beaches exhibits morphological patterns which are

rhythmic along the coast. These patterns are commonly not forced either by offshore
bathymetric features or by man-made structures, so their origin has been an intriguing
problem for decades. One type of such patterns consists of a longshore series of sand
bars which are oriented perpendicular or oblique to the coast. They are usually at-
tached to the coastline by cuspate features or salients called megacusps. The longshore
spacing between consecutive bars (or consecutive megacusps) is relatively regular,
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in the order of tens to hundreds of metres. Such a type of rhythmic morphological
systems was first systematically described by Evans (1938) and has been reported from
many sites, either in low-energy beaches (Niederoda & Tanner 1970; Falqués 1989)
or in moderate energy environments (Guilcher, Godard & Visseaux 1952; Hunter,
Clifton & Phillips 1979; Pedreros, Howa & Michel 1996; Konicki & Holman 2000;
Lafon et al. 2002). These bars can be subtidal or intertidal systems (Lafon et al. 2002;
Castelle 2004). Transverse/oblique bars may coexist with a longshore bar and they
can even be associated with the seaward facing horns of a crescentic bar. However,
they can also occur in the absence of any longshore bar (see Ribas, Falqués &
Montoto 2003).

Waves incoming obliquely to the coast drive a longshore current that may be quite
strong, which suggests that such bars could form as dunes or free bars in rivers
do, i.e. as a morphodynamic instability of the coupling of flow and morphology
through the sediment transport. This classical hypothesis was first formulated by
Sonu (1968) and has been explored since then by means of linear stability analysis
in different model contexts. Ribas et al. (2003) summarizes and discusses the
earlier linear stability analysis of Barcilon & Lau (1973), Hino (1974), Christensen,
Deigaard & Fredsoe (1994) and Falqués, Montoto & Iranzo (1996). All this previous
work shows that, indeed, transverse and oblique bars may stem from a self-
organization process involving the topography, the waves, the currents and the mobile
seabed. However, the emerging patterns are sensitive to the mean beach profile, either
barred or unbarred, and to the sediment transport description (Klein, Schuttelaars
& Stive 2004; Ribas 2004). Several instability modes can appear and, in particular,
the growing bars may be upcurrent or downcurrent oriented. This means that they
may open an acute angle against the current or with the current, respectively (Evans
1938; Short 1994). In general, all the models predict a downcurrent migration of
the bars.

In general, the linear stability analysis gives the initial tendency to grow or decay of
the various coupled flow-morphology patterns. Thus, it is useful to identify positive
feedback mechanisms between flow and morphology giving rise to the observed bed
patterns and to give an indication of the relevant time and space scales. However,
the assumption of infinitesimal amplitude of the linear analysis precludes any fully
reliable comparison with field observations, since it is never verified by the observed
bars. When the finite amplitude of the features is accounted for in a nonlinear stability
analysis, the conclusion is sometimes that some of the predictions (shape, spacing,
etc.) of the linear stability prevail for the finite-amplitude regime, but sometimes do
not (Calvete & de Swart 2003). Thus, while the linear stability gives a suggestion, any
true verification that morphodynamic instability is responsible for the formation of
bars requires nonlinear stability analysis. In particular, any information on the final
amplitude of the bars requires nonlinear analysis.

Nonlinear stability analysis of marine morphodynamic systems to model emerging
patterns can be done with approximated semi-analytical methods based on power
expansions in a small parameter. This typically leads to Ginzburg–Landau type
equations and, although these methods are valid for the finite amplitude of the
features, the conditions must be only slightly above critical, so they are known as
weakly nonlinear analysis. They have been applied, for instance, to sand ripples
by Blondeaux (1990), sand banks and sand waves by Komarova & Newell (2000)
and Idier & Astruc (2003). Removing the assumption of small amplitude commonly
requires the use of numerical models known as fully nonlinear models. This has
been carried out in recent years with various techniques. The more traditional
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method considers the basic physical principles (momentum, water mass, sediment
conservation) as partial differential equations, then discretizes them either by finite
differences or by spectral methods and finally solves them. This method has been
applied to the formation of crescentic bars by Damgaard et al. (2002) and by
Reniers, Roelvink & Thornton (2004) in case of shore–normal wave incidence. In
a similar context and with a similar method, Caballeria et al. (2002) examined the
finite-amplitude dynamics of both crescentic and transverse bars. Following a similar
approach but with spectral methods, Nemeth (2003) investigated the formation of
tidal sand waves. A second method still considers those governing partial differential
equations, but discretizes them by using expansions in the linear stability modes. This
procedure has been applied by Schuttelaars (1997) and Schramkowski, Schuttelaars
& de Swart (2004) to tidal embayment dynamics and by Calvete & de Swart (2003)
to the formation of shoreface-connected sand ridges. Finally, a third method uses
abstract rules to describe the basic physics of the system instead of using the partial
differential equations (e.g. cellular automata). This procedure has been pursued by
Werner & Fink (1993) and Coco, Huntley & O’Hare (2000) for the formation of
beach cusps and by Ashton, Murray & Arnault (2001) to the formation of large-scale
shoreline sand waves.

As has been summarized in the last paragraph, nonlinear stability analysis has been
applied to many morphodynamic systems. However, while those nonlinear models
describe the growth of morphological features up to finite amplitude, the saturation
process at some final amplitude is particularly difficult to describe. An exception is
the study of the formation of shoreface-connected sand ridges up to finite amplitude
along with its final nonlinear dynamics by Calvete & de Swart (2003) and Roos
et al. (2004). It was suggested that the saturation takes place as a balance between
the instability mechanism and the damping due to gravitational downslope sediment
transport, but a fully comprehensive explanation was not given. The instability source
in that context was the positive feedback between the growing bed features and
the perturbations on the current, thereinafter called ‘bedflow’ interaction. However,
the corresponding situation in the surf zone is much more complex because of the
presence of the breaking waves leading to the so-called ‘bedsurf’ coupling, namely,
the coupling between the growing bed features and the wave field. Thus, in the
existing models (Damgaard et al. 2002; Caballeria et al. 2002; Fachin & Sancho
2004; Reniers et al. 2004) the saturation of the growth of bars either has not been
reached or has not been discussed. Therefore, the finite-amplitude dynamics of surf
zone transverse/oblique bars in the case of shore–oblique wave incidence remains
largely unexplored.

Thus, our main goal here is to present a nonlinear stability analysis of surf zone
morphodynamics to investigate the mechanisms by which bar growth can saturate. At
the same time, the finite-amplitude characteristics of the emerging bars are analysed.
To this end, a finite-difference numerical model that is an extension of morfo50
(Caballeria et al. 2002) has been developed. Both shore-normal and oblique wave
incidence is considered. Two different sediment transport descriptions are used since
existing linear stability analysis suggests that the type of sediment transport can have
a profound influence on the shape of the emerging bars (Ribas et al. 2003). This is
particularly true in the case of an unbarred beach and has motivated the choice of
an unbarred beach for our study (Klein et al. 2004). The formulation of the so called
morfo55 model and the basic states are described in § 2. The numerical solutions
of transverse and oblique bars are investigated in § 3. Section 4 is dedicated to the
physical interpretation of the growth and of the saturation of these instabilities, first
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Figure 1. Coordinate system.

using a local analysis and then using a global analysis. Finally, the discussion and the
conclusion are presented in § § 5 and 6.

2. Nonlinear numerical model
The morfo55 nonlinear numerical model presented here is an extension of morfo50,

a depth-averaged shallow-water equations solver with sediment transport and bed
updating which was presented in Caballeria et al. (2002). Some improvements have
now been introduced both for the hydrodynamics and for the morphodynamics.

2.1. Governing equations

The governing equations are based on the depth- and wave-averaged shallow-water
equations described by Mei (1989). The origin O of the Cartesian coordinate system
(O, x1, x2, z) is situated at an arbitrary point of the coastline which is assumed to
be rectilinear (figure 1). The x1-axis stands for the seaward cross-shore direction, the
x2-axis stands for the longshore direction and the z-axis stands for the upward vertical
direction. The water mass conservation equation reads:

∂D

∂t
+

∂

∂xj

(Dvj ) = 0, (2.1)

where D(x1, x2, t) is the total mean depth and v(x1, x2, t) is the depth-averaged current
vector (v =(v1, v2)).

The momentum conservation equations are:

∂vi

∂t
+ vj

∂vi

∂xj

= −g
∂zs

∂xi

− 1

ρD

∂

∂xj

(S ′
ij − S ′′

ij ) − τbi

ρD
(i = 1, 2), (2.2)

where zs(x1, x2, t) is the mean sea level, g is the acceleration due to gravity and ρ

the water density. The wave radiation stress tensor, S ′, the turbulent Reynolds stress
tensor, S ′′

, and the bed shear stress vector, τb, are described below.
The main hydrodynamic improvement with respect to morfo50 has been the

introduction of the wave energy density conservation equation including wave–current
interaction and irregular waves, relaxing the assumption of a single breaking-point in
Caballeria et al. (2002):

∂E

∂t
+

∂

∂xj

((vj + cgj )E) + S ′
ij

∂vj

∂xi

= −ε, (2.3)
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where E(x1, x2, t) is energy density defined by E = ρgH 2
rms/8. Hrms is the root mean

square average of the wave height, cg is the group velocity vector of the waves and ε

the dissipation rate due to wave breaking and bottom friction.
To couple the bottom level with hydrodynamic variables, the sediment mass

conservation equation is used:

∂zb

∂t
+

1

1 − p

∂qj

∂xj

= 0, (2.4)

where zb(x1, x2, t) is the mean bed level (D = zs − zb), p is the sediment porosity
(p = 0.4) and q is the horizontal sediment flux vector.

2.2. Parameterization

2.2.1. Hydrodynamics

As is common, only the processes we are interested in are described dynamically
in the present study and the processes at smaller scale are parameterized. The former
are the formation and evolution of the bars, the currents and the low-frequency
waves. The latter consist of wind waves, turbulence, bed shear stress and sediment
transport. The momentum input due to wind waves has been parameterized in the
momentum equations (2.2) using the radiation stress tensor from the linear wave
theory (Longuet-Higgins & Stewart 1964):

S ′
ij = E

(
cg

c

kikj

k2
+

(
cg

c
− 1

2

)
δij

)
,

with δij being the Kronecker delta symbol and cg the modulus of the group velocity
vector cg . The phase velocity magnitude c and the modulus k of the wavenumber
vector k satisfy the relationship: σ = kc, where σ is the frequency of the incident
wavetrain, i.e. σ = 2π/T where T is the wave period.

To compute k, c, cg and cg , we use the four equations:

σ 2 = gk tanh kD, c =

√
g

k
tanh kD,

cg =
c

2

(
1 +

2kD

sinh(2kD)

)
, cgi =

ki

k
cg.

In the wave energy equation (2.3), both the dissipation rate by bottom friction and by
breaking, ε = εf + εb, is accounted for. According to Horikawa (1988), the dissipation
due to bottom friction, εf , is:

εf =
4

3π
ρCd

π3H 3
rms

T 3

1

sinh3(kD)
.

For the dissipation due to wave breaking, the expression (Thornton & Guza 1983)

εb =
3
√

π

16
B3fpρg

Hrms
5

γb
2D3

(
1 − 1

(1 + (Hrms/γbD)2)5/2

)

is obtained by considering the Rayleigh distribution as the probability distribution
for the wave height and taking into account that the largest waves are more likely to
break. Here, B is a breaking related coefficient (B = 1.0), fp is the intrinsic frequency
peak of the wave field, fp = σ/2π, and γb is the breaker index which has been fixed
to γb = 0.42 (Thornton & Guza 1983).
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The wave angle is evaluated with the Snell law:

k sin θ = k∞ sin θ∞, (2.5)

where θ is the wave angle defined as the angle between the wave rays and the x1-
axis, k∞ and θ∞ are the wavenumber magnitude and the wave angle at the seaward
boundary. This is exact for the alongshore uniform topography, but only a crude
approximation when alongshore rhythmic features develop. Equation (2.5) has been
used instead of the ‘local Snell law’ in Caballeria et al. (2002) because the local
Snell law was very conducive to model breakdown due to the limit angle for wave
refraction.

The momentum input from turbulence is described through the turbulent Reynolds
stress

S ′′
ij = ρνtD

(
∂vi

∂xj

+
∂vj

∂xi

)
,

where νt is the turbulent momentum horizontal diffusivity proposed by Battjes (1975),
νt = M(εb/ρ)1/3Hrms, where M is the turbulence parameter (the value M =1 has been
used here).

The bed shear stress in the momentum equations is an analytical approximation of
the average over the Rayleigh distributed wave height and over the wave period of
the instantaneous bed shear stress vector given by Mei (1989):

τ b
i = ρCd |v + ub|(v + ub),

where ub is the wave orbital velocity vector at the bottom.

2.2.2. Sediment transport

An important issue is the description of sediment flux in the bottom evolution
equation (2.4). The results presented here correspond to the general total load sediment
flux defined as:

q = α
(
v − γ ub

rms∇h
)
, (2.6)

where α is the stirring factor, γ the bedslope coefficient and ub
rms the root-mean-square

wave orbital velocity amplitude at the bottom defined as:

ub
rms =

σHrms

2 sinh(kD)
.

Here, the onshore transport driven by wave nonlinearity and undertow is assumed
to be in balance with the gravitational downslope transport to build a certain
equilibrium cross-shore beach profile, zb = z0

b(x1). When this equilibrium is broken
by the growing bars, it is assumed that this will only cause a diffusive sediment
transport proportional to the gradient of the bed level deviation from equilibrium,
h = zb − z0

b. This simplification is motivated by the interest here in the growth of
longshore non-uniformities rather than cross-shore migration of bars and has been
commonly adopted in all the modelling studies on rhythmic topography (Deigaard
et al. 1999; Caballeria et al. 2002; Damgaard et al. 2002; Ribas et al. 2003). It is
physically based on the fact that the transport driven by the longshore current and
rip currents is typically stronger than the transport directly driven by the waves (at
least for well-developed rips).

Two different stirring factors are chosen, a cross-shore uniform or constant wave
stirring (α = 0.001 m) and a function based on the Soulsby and Van Rijn formula
(Soulsby 1997). The two choices will be hereinafter referred to as CWS and SVR,
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respectively. The main motivation for using the CWS transport is that it has been
used in a number of existing stability studies (Hino 1974; Falqués, Coco & Huntley
2000; Ribas et al. 2003). As argued in Falqués et al. (2000), a constant stirring may
be associated with the situation where the infragravity wave energy is important.
This can be seen from the Bailard formula (Bailard 1981) by considering (i) a wave-
dominated beach, i.e. a beach where the orbital velocity of waves is stronger than the
current (Ribas et al. 2003) and (ii) a significant low-frequency wave energy (Falqués
et al. 2000) whose shoreward increasing orbital velocity compensates the decrease
induced by the breaking of high-frequency waves. The stirring factor corresponding
to the SVR transport reads

α = AS

[(
|v|2 +

0.018

CD

ub
rms

2
)1/2

− ucrit

]2.4

if

(
|v|2 +

0.018

CD

ub
rms

2
)1/2

> ucrit

= 0 otherwise,

where the constant AS =ASS +ASB depends essentially on sediment characteristics
and water depth and where ASS represents the suspended load transport and ASB

the bedload transport (Soulsby 1997). The threshold current velocity for sediment
transport ucrit depends on sediment properties and depth (Soulsby 1997). The
morphodynamic drag coefficient is defined by CD = (0.40/(ln(D/z0) − 1)2. Contrarily
to CD , the drag coefficient used in the computation of the bed shear stress (Cd) is
constant to keep the same hydrodyamics independently of the transport formula. In
the case of the SVR transport, some experiments were also made using a variable
drag coefficient for the hydrodynamics and the results were not essentially different.
The sediment grain size is given by D50 = 0.25 mm and z0 = 0.006 m is assumed.

The bedslope coefficient γ is a critical parameter in our model which will differ
depending on the stirring function used. There is a large uncertainty on its value
and this is why a sensitivity study will be done. Nevertheless, a default value must
be found for each stirring function by analogy with previous modelling studies. The
difference between our SVR sediment transport formula and the original one (Soulsby
1997) is in the bedslope term where |v| has been substituted by ub

rms. The motivation
is the following. Actually, both |v| and ub

rms contribute to stirring the sediment and
ub

rms is typically larger than |v|. Furthermore, for normal wave incidence the current
vanishes in the basic state so that small topographic departures from equilibrium
would not cause downslope transport which is unrealistic. Assuming the velocities
are of order 1 m s−1, the original γ advised by Soulsby (1997) was 1.6. Regarding
Bailard’s transport formula (Bailard 1981), the order of magnitude of γ was 1.5 for
the suspended load transport and 0.2 for the bedload transport. For the reference
cases, γ has been fixed to 1.5 with the SVR stirring and to 0.5 with the constant
stirring.

2.3. Numerical method

The five equations: (2.1), (2.2)i=1,2, (2.3) and (2.4) with the five unknowns: zs(x1, x2, t),
v1(x1, x2, t), v2(x1, x2, t), Hrms(x1, x2, t) and zb(x1, x2, t) have been solved numerically
in order to describe the time evolution of a perturbed equilibrium beach under the
wind wave forcing. For the sake of simplicity, the x1 and x2 axes will be referred to
as x and y axes in the rest of the paper, and v1 and v2 will become u and v.

2.3.1. Equilibrium beach profile

As in all stability models to explain the occurrence of complex morphological
patterns, the patterns are supposed to form from an instability of a state where the
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patterns are absent. This state is here based on an alongshore uniform equilibrium
beach profile which is taken from Yu & Slinn (2003), but excluding the shore parallel
bar:

z0
b(x) = −a0 − a1

(
1 − β2

β1

)
tanh

(
β1 x

a1

)
− β2 x. (2.7)

The motivation for not considering a longshore bar is twofold: (i) oblique/transverse
bars are sometimes observed without the presence of those bars and (ii) even in
case of a barred beach, the dynamics of bars observed at the inner surf zone close
to the coastline are believed to be independent of the outer (alongshore uniform)
shore-parallel bar. This is suggested by the linear stability analysis of Calvete et al.
(2005) where, in this barred beach, transverse bars at the shore grow from a linear
mode which fits with the initial state of our transverse bars evolution described later.
Furthermore, previous modelling shows that oblique/transverse bars form in areas
where there is significant wave breaking. Thus, this would occur next to the shore with
the incident waves no matter whether there would have been a reduction of wave
height on the bar or not. To avoid the complications of swash zone dynamics which
are expected to have little influence on surf zone dynamics, the shoreline is assumed
to consist of a vertical wall at x = 0 with a small still-water depth, a0, and to be
fixed in time. Although this assumption filters out the dynamics of the formation
of megacusps, the tendency for the formation of megacups in nature could still be
inferred from model results if there is sediment accumulation/erosion at the (fixed)
coastline. The value of a0 has been chosen between 0.10 m to 0.25 m, depending on
the amplitude of the bathymetric patterns that will develop close to the shoreline.
The other parameter is fixed to a1 = 2.97 m and the shoreline and offshore slopes are
β1 = 0.075 and β2 = 0.0064. These parameters come from an approximation of the
beach profile measured at Duck, North Carolina (Yu & Slinn 2003).

Figure 2 shows some characteristic values of the system at the basic state. This is
the equilibrium state reached by the system if there are no longshore irregularities,
the morphodynamics remaining steady. In the next sections, when morphodynamic
instabilities develop, the new equilibrium state eventually reached by the system is
called the saturated state. The model is run on the concave up beach (cf. (2.7)) without
any initial perturbation. At the offshore boundary, waves are assumed to approach
from an angle with the shore-normal, θ = 25◦. The wave height is forced to increase
from Hrms =0 to 1 m within a time period of 5 min. This gradual switching on of the
wave height avoids strong transient oscillations from the hydrodynamic equations.
After about 50 min the system became steady, the maximum longshore current being
vmax =0.8 m s−1 at x = 11 m. It is worth noting that in other related studies (e.g.
Fachin & Sancho 2004) the instability of the equilibrium state develops just from
the unavoidable random numerical inaccuracies without any initial perturbation. In
contrast, this is not the case with the present morfo55 model (also with morfo50,
Caballeria et al. 2002). Without superposing initial disturbances to the equilibrium,
the system state remains constant during all the simulation with the present model.
Most probably, this is due to a higher numerical stability of the integration method.
A representative value of the characteristic width of the surf zone is the distance from
shore to the point of maximum breaking dissipation (εb) which for this simulation
turns out to be xb =11 m. This ‘maximum breaking’ point is represented by the
vertical dashed line.

According to previous studies where the sediment flux is described as a stirring
factor multiplied by the current, the morphodynamic behaviour is mainly governed
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Figure 2. Hrms = 1.0 m, T = 6 s, θ =25◦. Equilibrium profiles of the basic state in the case of
oblique wave incidence. (a) Wave height (Hrms), (b) mean sea level (zs), (c) longshore velocity (v),
(d) wave angle (θ ), (e) dissipation rate (εb) and (f ) bottom level (zb). Shoreline at x = 0.

by the ‘potential stirring’, i.e. the stirring factor divided by water depth (Falqués
et al. 2000; Coco et al. 2002; Ribas et al. 2003). Figure 3 shows that (i) for the SVR
transport, in each case, the stirring factor and the potential stirring increase seaward
at the inner surf zone and decrease seaward beyond a certain point and (ii) for the
CWS transport, the stirring factor has been chosen approximately as the maximum
of the SVR stirring and gives a seaward decreasing potential stirring.

2.3.2. Boundary conditions

The rectangular computational domain is defined as 0 � x � Lx cross-shore and
0 � y � Ly longshore. For each experiment, a large domain in the y-direction must
be used to ascertain results are independent of Ly . In order to investigate rhythmic
features along the coast, periodic boundary conditions for each variable and for its
first y-derivative are assumed on the lateral boundaries (e.g. zb(, 0, t) = zb(x, Ly, t)
and ∂zb/∂y(x, 0, t) = ∂zb/∂y(x, Ly, t)).

At the off-shore boundary (x =Lx), Hrms is imposed. The sea and bed levels, zs , zb,
are assumed free according to the mass conservation equation (2.1) and the bottom
evolution equation (2.4), respectively. A radiation boundary condition is applied to
the flow components u and v (Caballeria 2000) to ensure a seaward exponential
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Figure 3. Hrms = 1.0 m, T = 6 s. Stirring factor α (up) and potential stirring α/D (down) at
the equilibrium state for three cases: (i) SVR transport, θ = 0◦, (ii) SVR transport, θ = 25◦,
(iii) CWS transport, θ = 25◦.

decay. The motivation for this decay is that the flow pattern which is linked to the
emerging surf zone bars is expected to be confined in the nearshore.

At the shore boundary (x =0), a vanishing cross-shore flux and longshore current
are imposed to be consistent with the artificial wall imposed at the shoreline and with
the assumption of a viscous flow. The variables zs , zb and Hrms are assumed to be free
according to their respective conservation equations (2.1), (2.4) and (2.3).

2.3.3. Discretization

The finite-difference numerical scheme is essentially similar to that described in
Caballeria (2000). The centred finite-difference method on a regular rectangular
staggered grid is used for the spatial derivatives. The explicit Adams–Bashforth
scheme for the temporal derivative required two Courant–Friedrichs–Levy (CFL)
conditions owing to the parabolic and hyperbolic characters of the system of
equations. The most restrictive is the numerical stability condition caused by the
hyperbolic nature: �t � tCFL, with tCFL = c1 min{�x, �y}/

√
gDmax where �t is the

time step and (�x, �y) the grid spacing defined as (�x, �y) = (Lx/(Nx − 1), Ly/Ny)
where (Nx, Ny) is the number of points in the computational domain. The constant
c1 is determined empirically and is found to be about 0.1 (Caballeria 2000).

3. Model results
3.1. Characteristic values

3.1.1. Input parameters

The experiments have been done by using each sediment transport formula. The
SVR transport in the case of normal wave incidence (SVR-i), oblique wave incidence
(SVR-ii) and the CWS transport only in the case of oblique waves (CWS) will be
presented, the case of normal wave incidence appearing to be stable in agreement
with Falqués et al. (2000). All the experiments have been compared with a reference
or default case which will be studied in detail here.
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Case Lx (m) Ly (m) �x (m) �y (m) a0 (m) tCFL (s) �t (s) �tM (s) tCPU (h)

SVR 100 300 1.0 1.0 0.25 0.018 0.01 1.51 4.0
CWS 100 800 2.0 4.0 0.10 0.036 0.01 1.51 1.0

Table 1. Fixed input parameters for each sediment transport formula.

Hrms (m) θ (deg.) T (s) γ

Case Def Min Max Def Min Max Def Min Max Def Min Max

SVR-i 1.0 0.5 1.25 0 − − 6 6 12 1.5 1.4 2.5
SVR-ii 1.0 0.5 1.25 25 5 45 6 6 12 1.5 1.5 1.8
CWS 1.0 0.5 1.25 25 5 45 6 6 12 0.5 0.3 0.9

Table 2. Variable input parameters for each experiment. Default (def), minimum (min) and
maximum (max) values.

The fixed input parameters arbitrarily set for each sediment transport formula are
shown in table 1. Lx is the same for all experiments in order to keep the same
equilibrium cross-shore profile independently of the sediment transport used, whereas
Ly is chosen to be about 10 times the final spacing of bars for the reference cases. As
the longshore length of the integration domain artificially imposes a final spacing of
bars as a divisor of Ly , the relative error of this final spacing will be of about 10 %. �x

depends on the cross-shore span of the bars, a bar must be described by more than 15
points in the off-shore direction and �y must be sufficiently small to avoid numerical
oscillations. The height of the artificial wall at the coastline depends on the distance
from the coastline to the top of the bars. The morphodynamic processes have been
artificially accelerated by a factor 150 for computational convenience (see Caballeria
2000), giving the morphodynamic time step as: �tM = 150�t . This acceleration factor
has been empirically determined on small computational domains obtaining the same
results by using it or not. Finally, tCPU is defined as the CPU time corresponding to
1 day of beach evolution using a Pentium IV, 2.8 GHz.

In order to excite the system and develop the instabilities, the longshore uniformity
has been broken off by adding a smoothed random function to the initial bathymetry.
In order to check that the final state does not depend on the particular choice of the
initial conditions, a ‘Dirac-function like’ initial perturbation has been considered as
well. Similarly, several domain lengths have also been tested. Although the particular
intermediate states may differ from test to test, the final state and the growth rate of
the instabilities were the same.

Each reference case is characterized by a wave forcing at the offshore boundary
(Hrms, θ , T ) and by the bedslope parameter (γ ). The influence of these parameters
will also be investigated. The default value of these variables and the minimum
(maximum) value studied are shown in table 2.

3.1.2. Characteristics of the bars

As in nature, the bars generated by a nonlinear model starting with random initial
conditions may have a relatively irregular shape whose quantitative characterization
is not straightforward. To this end, six time-dependent quantities have been used.
(i) The amplitude Am (m) is defined as Am = 0.5(hmax − hmin), where hmax (hmin) is the
maximum (minimum) value of h throughout the model domain. (ii) The angle βm

(deg.) (� 0) is the mean of the angle formed by crests and troughs with the x-axis.
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Case Mode Am βm λmean λm Sm Lm Tm σm cm

(m) (deg.) (m) (m) (m) (m) (day) (day−1) (m day−1)

SVR-i
1

0.13 0 30 30 11 11 – 2.1 0
SVR-ii 0.37 51 30 30 19 30 0.18 1.6 167

CWS
1 0.28 34 50 50 30 36 0.7 1.25 71
2 0.26 49 73 73 40 61 1.7 0.7 43

Table 3. Characteristics of the dominant modes for the default case.

It may be either ‘up’ or ‘down’ according to whether bars are up-current or down-
current and it is zero for transverse bars. (iii) The longshore mean spacing λmean (m)
is the average spacing between two crests of bars which is obtained by counting the
number of bar crests in a longshore section along the domain. (iv) The longshore
dominant spacing λm (m) is the dominant wavelength of bars according to Fourier
analysis. To this end, we use the discrete Fourier transform of the bed level at the
longshore section x = 10 m:

H(kl) =

Ny∑
j=1

h(10, yj ) exp

(
−i

2π

Ny

(j − 1)(l − 1)

)
, kl =

2π(l − 1)

Ly

, l = 1 : Ny, (3.1)

where H(kl) is the Fourier coefficient corresponding to the wavenumber of the
topographic signal kl and yj = j�y. The normalized modulus of the Fourier
coefficients is defined as |H|n(kl) = |H(kl)|/ maxkl

|H(kl)|. The wavenumber for which
|H(kl)| is maximum defines the dominant mode and is called km. Finally, the variables
with the subscript m correspond to the dominant mode and the variables with
the subscript l correspond to any mode with the wavenumber kl , for example
λm = λl = m = 2π/km. (v) The cross-shore span Sm (m) is the mean horizontal cross-
shore approximate span of bar crests and bar troughs. (vi) The total approximate
span or length Lm (m) is given by Sm/ cos(βm). Furthermore, the temporal behaviour
of bars will be characterized by three quantities. (i) The period Tm (day) is the time
that the bars spend in travelling across one dominant spacing. (ii) The growth rate
σm (day−1) is obtained plotting the time evolution of |H(kl)|. At the initial stages
of the simulation, the perturbations are expected to grow exponentially in time,
consistent with the linear stability theory. This means that for each wavenumber
kl , H(kl, t) ≈ H(kl, 0) exp(σlt). Thus, by taking the logarithm of the modulus, its
real growth rate, Re(σl), can be isolated from: ln |H(kl, t)| ≈ Re(σl)t + ln |H(kl, 0)|.
Therefore, the initial growth of ln |H(kl, t)| for each wavenumber kl should be a
straight line with a slope Re(σl). For the dominant mode, we define σm = Re(σl = m).
(iii) The migration velocity cm (m day−1) is calculated as λm/Tm.

3.2. Default cases

3.2.1. SVR transport, normal incident waves (SVR-i)

Figure 4 shows four steps of the evolution of the topography during 8 days.
The domain has been reduced for the visualization: (0 m < x < 30 m and 50 m
<y < 150 m). At day 1, the initial random perturbations seem erased and the total
depth seems longitudinally uniform. At day 2, regular and gentle transverse bars with
an amplitude up to 5 cm appear with a spacing of λmean = 20 m. They will grow and
merge together until the system reaches its final state at day 8. The final characteristics
of these bars are given in table 3: the bar amplitude is Am = 0.13 m, the mean spacing
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Figure 4. SVR transport, Hrms = 1.0 m, T =6 s, θ =0◦. Zoom of the total bathymetry during
the formation, development and growth saturation of shore-transverse bars.
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Figure 5. SVR transport, Hrms = 1.0 m, T =6 s, θ = 0◦. Final state (day 8). Bathymetric
contours (zb) and circulation (v) over transverse bars. Shallowest areas are white and deepest
areas are shaded.

is λmean = 30 m and the cross-shore span is the size of the surf zone, Sm = xb = 11 m.
Figure 5 is a top view of the final bathymetry and circulation. The latter consists of a
very clear rip-current system, the current going offshore at the troughs and onshore
over the shoals. It is also apparent that, as is observed in nature, the seaward flowing
current is narrow, jet-like and stronger than the shoreward flow which is wider and
weaker. The maximum seaward current is |u| =0.38 m s−1 and the maximum feeder
current (longshore current) is |v| = 0.37m s−1. A more precise description of the
dynamics of these bars may be obtained by looking at the time evolution curves. The
crests and the troughs of the bars can be seen in figure 6(a). As described in figure 4,
bars are very subtle until day 2. Between days 2 and 4, the merging of some of the bars
can be seen. At day 6, the state of the bars seems very close to the final state at day
8. It is also clear that crests and troughs remain parallel to the time axis, showing the
non-migration of the bars. Merging of bars (and also splitting) is shown in figure 6(b)
where the different steps presented in figure 6(a) are recovered. It can be seen that the
number of bars in the domain systematically decreases from day 1 until the final state
where λmean =30 m. Figure 6 (c) shows that at the beginning of the simulation, the
spectral energy is randomly distributed among the different wavenumbers consistently
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Figure 6. SVR transport, Hrms = 1.0 m, T = 6 s, θ = 0◦. Time series of (a) the bed level along
the longshore section at x = 10 m (h(y, t)), crests are white and troughs are black, (b) the
mean spacing of the bars (λmean(t)), (c) the normalized modulus of the Fourier coefficient of
the topographic signal (|H|n(kl, t)), (d) the resulting predominant spacing of bars (λm(t)),
(e) the two predominant most energetic (non-normalized) Fourier coefficients of the
topographic signal (|H|(kl, t)), corresponding to: λm = 2π/km = 20 m (dashed line), λm =30m
(thick line), and (f ) their logarithmic value (ln |H(km, t)|).

with the randomness of the initial perturbation, and after day 1, one wavenumber
becomes clearly dominant. It is important to notice the difference between the mean
spacing (figure 6b) and the dominant spacing (figure 6d ). Indeed, as seen in this
plot, the time when λm grows does not necessarily correspond to the merging of
bars, i.e. the time when λmean is increasing. At the final steady state, however, both
wavelengths coincide, λm = λmean = 30 m. This plot indicates that at day 1 the finally
dominant wavelength is already dominant. The final spacing actually corresponds to
an instability mode which appears very soon in the evolution, but other modes are
also present during all the simulation. The nonlinear competition between all these
modes accounts for λm �= λmean, but the other modes never dominate upon the finally
dominant mode. Figure 6 (e) shows the time evolution of the two largest Fourier



Shore sand bars 341

10
2060 80 100 120 140

–2

–1

0

Day  0
z 

(m
)

10
2060 80 100 120 140

–2

–1

0

x (m)

Day  1

10
2060 80 100 120 140

–2

–1

0

Day 3

y (m)

z 
(m

)

10
2060 80 100 120 140

–2

–1

0

x (m)

Day  8

y (m)

Figure 7. SVR transport, Hrms =1.0 m, T =6 s, θ =25◦. Zoom of the total bathymetry during
the formation, development and growth saturation of oblique down-current oriented bars.
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Figure 8. SVR transport, Hrms = 1.0 m, T = 6 s, θ =25◦. Final state (day 14). Bathymetric
contours (zb) and circulation (v) over down-current oriented bars. Shallowest areas are white
and deepest areas are shaded.

coefficients |H(kl, t)|: the dominant one during all the evolution and the second one
at the initial stage. The slope of the linear part of each curve of figure 6 (f ) gives a
very similar growth rate for the two modes: σm =2.3 day−1.

3.2.2. SVR transport, oblique waves (SVR-ii)

As shown in figure 7, bars trending obliquely to the coast with a down-current
orientation appear in this case. They have reached the middle of the growth at day 3
and the final saturated states are obtained at day 8 when the amplitude of the bars
is Am = 0.37 m (table 3). At this state, they have adopted a backward curved shape in
plan view with the seaward tip of the bar becoming perpendicular to the coast rather
than oblique. A meandering of the longshore current is observed as a result of the bars
(figure 8), the current being deflected onshore over the crests and offshore over the
troughs. This meandering is consistent with previous studies (Ribas et al. 2003) and
has been called ‘current refraction’. The deflection is relatively weak, the cross-shore
flow component being smaller than the longshore component (up to |u| � 0.3m s−1

in comparison with |v| � 0.9 m s−1). The most significant deflection occurs close to
the shoreline, especially at the troughs. The formation of bars is clearly visible in
figure 9(a) between days 2 and 4. The down-current migration of the bars is easily
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Figure 9. SVR transport, Hrms = 1.0 m, T = 6 s, θ = 25◦. The graph description is the same
as figure 6 with (g) the time evolution of the bottom perturbation at one point: (x =10m,
y = 22.5 m). For (e) and (f ), λm = 2π/km =25 m (dashed line), λm = 30 m (thick line).

seen through the slope of the dark and white strips. In the final saturated state, bars
move about 300 m within 1.8 days so that the migration celerity is about cm = 167 m
day−1. The mean shows four steps of wavelength λmean remains constant to 30 m
from day 3 (figure 9b), indicating that there is no clear merging/splitting after the
waves have reached their final amplitude, in contrast with the case of transverse bars.
Figure 9(c) shows the initial uniformly distributed spectral energy and the process
of energy concentration at wavelengths of 20 m and larger during the first three
days. For example, a mode with λm = 25 m emerges from this process and becomes
dominant at day 1. At the same time, the finally dominant mode, λ=30 m, is already
present and competes with that one. This competition can be clearly seen in the plot
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Figure 10. CWS transport, Hrms = 1.0 m, T = 6 s, θ = 25◦. Zoom of the total bathymetry
during the formation, development and growth saturation of oblique up-current oriented bars.
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Figure 11. CWS transport, Hrms =1.0 m, T = 6 s, θ =25◦. Final state (day 85). Bathymetric
contours (zb) and circulation (v) over up-current oriented bars. Shallowest areas are white and
deepest areas are shaded.

of ln |H(kl, t)| shown in figure 9(f ). This 30 m mode becomes dominant over the 25 m
mode just after day 1 and competes with other modes. At day 3, it remains dominant
until the end of the simulation. This plot allows us to estimate the growth rate of
the finally dominant mode as σm � 1.6 day−1. Figure 9(g) is in fact a transect of
figure 9(a). The period Tm of sand waves can be easily extracted from it. The final
period, reached after day 5, is Tm =0.18 day. The migration velocity may also be
calculated as cm = λm/Tm and the values are consistent with figure 9(a).

3.2.3. CWS transport, oblique waves (CWS)

Figure 10 displays the evolution of the topography during the first 140 days. Only
a partial view of the domain is shown in the y-direction (200 m <y < 400 m). The
time leading to the final saturated state seems very long, but at day 7, the bars have
already grown and have reached their final amplitude. At this time, they start to
merge together so that their wavelength grows up to 73 m, and at day 35 the bar
system is very close to the final one at day 140. Figure 11 shows the final morphology
and hydrodynamics of this up-current bar system. As for the down-current bars, the
longshore flow component (|v| � 0.8m s−1) is considerably larger than the cross-shore
component (up to |u| � 0.2 m s−1). The corresponding meandering is opposed to that
in the case of down-current bars: the longshore current is deflected seaward over
the crests and shoreward at the troughs. Again, this ‘current refraction’ is consistent
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Figure 12. CWS transport, Hrms = 1.0 m, T = 6 s, θ =25◦. The graph description is the same
as figure 9 but for (e) and (f ), λm = 2π/km = 50m (dashed line), λm = 72 m (thick line).

with previous linear stability analysis (Ribas et al. 2003). In this case (constant wave
stirring), it is similar to that of storm currents over shoreface-connected ridges on the
inner continental shelf (Trowbridge 1995; Calvete et al. 2001) which occurs at a larger
length scale. The steps observed in figure 10 are clearly recovered in figure 12(a). In
particular, like the transverse bars and unlike the down-current oriented bars, these
are visible on the total topography before having reached their final length. Complex
dynamics in which the mean spacing λmean (figure 12b) oscillates around 50 m occur
because of splitting and merging of bars during the first 10 days. Merging eventually
dominates so that the mean spacing increases up to about λmean = 72 m at day 35
and does not change anymore. Two states are observed (i) corresponding to the
wavelength of about λmean =50 m (from day 5 to day 10) and (ii) the final state (at
day 140, but very close to day 35). In contrast with the transverse bar case, state (i)
corresponds to a predominant mode different to the final one (figure 12c, d ). In this
default case, we will assume the bar system has reached state (i) at day 7. We will
denote the corresponding predominant modes for states (i) and (ii) by the subscripts
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Case Mode
Hrms ↗ θ ↗ T ↗ γ ↗

Am λm σm λm Tm σm cm Am Tm cm Am λm Tm σm cm

SVR-i 1

↗
↗ ↗ ↘ ↘

↗ ↘SVR-ii ↗
↘ ↗ ↗ ↘ ↗ ↗ ↘

CWS
1

↘
2 ↗↘ ↘

Table 4. Main influence of the variable input parameters (Hrms, θ , T and γ ) on the
characteristics of the dominant modes. The symbol ↗ (↘) means that the corresponding
characteristic increases (decreases) when the input parameter increases.

m1 and m2, respectively (table 3). The oscillating Fourier coefficients of these two
modes which are the most energetic are displayed in figure 12(e, f ) and show how a
final equilibrium is hardly reached by the system. Because of these oscillations, the
computed growth rates of these modes are just crude approximations.

3.3. Parametric trends

3.3.1. Hydrodynamic parameters

The influence of changing Hrms between 0.5 and 1.25 m has been investigated in
all the cases (see table 4). For waves smaller than 0.5 m the morphological system is
stable so that bars do not grow. For waves bigger than 1.25 m, an extension of the
cross-shore length of the domain is necessary. The dependence of bar formation on
the wave height agrees with previous linear studies (Ribas 2004). Indeed, an increase
of wave height implies larger wavelengths (both λm and λmean) and a larger cross-shore
span in direct relationship with a larger width of the surf-zone. It also implies larger
bars in amplitude, but the shape (including the bar angle βm) remains the same. The
growth rate of the dominant mode also rises with rising wave height. In the case
of oblique wave incidence, the period of bars keeps almost the same value, so the
migration celerity decreases with an increasing wave height. For the two SVR cases,
most of the dependence occurs between Hrms =0.5 and 1 m. This is also the case for
the mode 1 of the CWS case (which is dominant before the merging of bars). In
particular, λm and Sm increase by the factor 1.6 while Hrms doubles. Nevertheless, in
the CWS case, the growth of wave height stimulates nonlinearities, so the merging of
bars is much stronger for waves of 1.25 m than for waves of 1 m and this leads to bar
spacing of λm2 = 130 m at the final state. In contrast, for waves of 0.5 m where bars
do not merge, only mode 1 is present with a spacing of λm1 = 40 m.

The wave angle is also a critical parameter for the formation of oblique bars (SVR-ii
and CWS cases). Small wave incidence angles (θ < 25◦) at the off-shore boundary have
first been studied. By using the SVR transport, some cases lead to stability, but there
is no clear threshold angle for the formation of down-current oriented bars. Where
using the CWS transport, the threshold angle over which up-current oriented bars
appear is about θ = 20◦. Final amplitude is only 6 cm and only mode 1 is present. For
larger wave incidence angles (25◦ � θ � 45◦) (table 4), both for the SVR case and
for CWS case (modes 1 and 2), the amplitude and the cross-shore span of the bar is
not affected by the variation of the wave angle and the behaviour of the bars reveals
some common tendencies: the increase of the wave angle implies the increase of σm,
the decrease of Tm and the increase of cm. Nevertheless, while βm and λm decrease in
the SVR case, they have an opposite behaviour in the CWS case for the two modes.
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In all cases, variation of bar characteristics does not exceed 40 % whereas wave angle
increases 80 %.

The increase of wave period from 6 to 12 s has a minor effect on the shape of the
bars, although the final amplitude of the bars tends to reduce, and, in the case of
oblique wave incidence, the bar period decreases a little which implies an increase of
the migration celerity (table 4).

3.3.2. Bedslope parameter γ

For each case, the effect of the bedslope parameter γ has been investigated as
indicated in table 3. For this range of γ , the results are summarized in table 4. For
smaller values of γ , the bars grow too much and their tops tends to emerge from the
water. The values of γ leading to numerically stable computations are characterized
by a ratio of maximum bar amplitude to total mean water depth, h/(D + h), not
larger than about 0.6 during the simulation. In other words, if this ratio exceeds 0.6
at some location at some time, the numerical model crashes. On the other hand, for
larger values of γ , patterns do not appear since an increase of bedslope transport
coefficient causes an increase in morphodynamic diffusivity producing a damping of
the patterns. For the same reason, the linear stability theory would suggest than an
increase of bedslope transport coefficient would cause an increase of the spacing and
a decrease of growth rate and, thereby, a decrease of the final amplitude (weakly
nonlinear stability analysis, Knaapen 2001). This behaviour is observed in the SVR
cases, where λm grows by 30 % and σm decreases by 70 % between the two critical
values of γ , whereas the amplitude decreases down to 3 cm.

For the CWS case, the dynamics are more complicated. Indeed, mode 1 follows the
same trends as described above and agrees with linear theory. Likewise, the amplitude
and the growth rate of mode 2 also decrease with increasing γ . However, the final
spacing λm2 increases when γ decreases. This is probably because a very low γ leads to
a strongly nonlinear regime where many wavelengths are allowed to interact, with the
result that the dominant wavelength is a low subharmonic of the linearly dominant
one. This increasing λm1 and decreasing λm2 with increasing γ lead to a particular
case for γ =0.9 where there is only one mode and bars do not merge.

More generally, the span of transverse bars remains about the width of the surf-
zone. For oblique bars, their angle is not affected, but their span grows when bars
become larger. The migration velocity of oblique bars is also directly linked with
the spacing: cm decreases when λm increases, implying an even stronger reduction
of Tm.

4. Physical interpretation: growth and saturation
4.1. Local analysis of the growth

According to the present modelling, the formation of the bars is due to a feedback
between the morphology and the water flow which is positive – and dominant – only
for certain shapes of the bars. Obviously, this is an output of the coupling between
morphology and water motion through the sediment transport and it is as a result
of sediment, water, momentum and energy conservation. However, the reasons why
certain bar shapes grow and others do not, why this results in a particular longshore
spacing, migration celerity and final amplitude are not straightforward. Nevertheless,
some further insight may be gained by looking at the spatial distribution of the
potential stirring, α/D, as done in some previous studies (Falqués et al. 2000; Coco
et al. 2002; Ribas et al. 2003).
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By using the sediment flux expression (2.6), the sediment conservation equation (2.4),
reads

(1 − p)
∂h

∂t
+ ∇ · (αv) − ∇ · (Γ ∇h) = 0, (4.1)

where Γ = γαub
rms and where ∂zb/∂t = ∂h/∂t since z0

b is constant in time. Notice that
the main difference with Caballeria et al. (2002) is that it is here assumed that, in
general, α = α(|v|, ub

rms). Thus, if the sediment flux was for instance proportional to
|v|m−1v, the factor |v|m−1 would now be included in α in contrast with Caballeria et al.
(2002). According to the water mass conservation (2.1),

∇ · (αv) = ∇ ·
(

α

D
Dv

)
= D∇

(
α

D

)
· v − α

D

∂D

∂t
. (4.2)

By inserting (4.2) in (4.1),

(1 − p)
∂h

∂t
+ D v · ∇Π = ∇ · (Γ ∇h) + Π

∂D

∂t
(4.3)

is obtained, where Π =α/D stands for the potential stirring. The last term in this
equation can be neglected because of the following. First, a reasonable upper bound
for the stirring coefficient can be obtained from the SVR sediment transport in the
case of |v| ∼ 1 m s−1 as α � 0.001 m and, by assuming D � 0.1 m, we can therefore
assume Π � 0.01 (see also figure 3). Secondly, if the effects of infragravity waves on
sediment transport are neglected, we can assume that the flow adjusts instantaneously
to the slow bed changes (quasi-steady behaviour, see Caballeria et al. 2002). In this
situation, |∂D/∂t | = |∂zs/∂t − ∂h/∂t | ∼ |∂h/∂t |. Thus, the last term on the right-hand
side in (4.3) is much smaller than the first one on the left-hand side and we can
therefore use the following bottom evolution equation (BEE):

(1 − p)
∂h

∂t
= ∇ · (Γ ∇h) − D v · ∇Π. (4.4)

If the last term on the right-hand side is ignored, this is a diffusion equation for the
bed perturbation, h(x, y, t), and Γ is hence referred to as morphodynamic diffusivity.
Thus, without the second term on the right-hand side, the bed perturbations would
just diffuse away (and propagate owing to advection effects because of the gradient
in Γ ), but instabilities could not develop. If morphodynamic instabilities occur, they
should be induced by the second term. The condition for instability, is that this
term be positive (causing ∂h/∂t > 0) over the shoals (h > 0) and negative (causing
∂h/∂t < 0) at the bed depressions (h < 0). This means that to have instability, the
current must go against the gradients in potential stirring at the shoals and with the
gradients in potential stirring at the troughs. Given a particular current (v) and wave
(ub

rms) distributions, BEE allows for predicting and understanding the morphodynamic
effect of such a hydrodynamic pattern. In particular, once the hydrodynamic pattern
caused by a given morphology is known, BEE is useful for elucidating whether the
morphological pattern will grow or decay or migrate. Notice that the flow enters the
BEE not only explicitly through v, but also implicitly via the dependence of α and Γ

upon |v| and ub
rms.

4.1.1. Transverse bars

Figure 13 (a) shows the circulation pattern together with the contour lines of the
potential stirring at the initial development of transverse bars (t = 3 day). In the inner
surf zone, the gradient in potential stirring is offshore directed so that, according to
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Figure 13. SVR transport, Hrms = 1.0 m, T = 6 s, θ = 0◦. Left (a, b) Initial state (day 3).
(c, d) Final state (day 12). (a, c) α/D (small values are shaded and large values are white) and
current vectors. (b, d) Dv · ∇(α/D) (negative values (accretion) are white and positive values
(erosion) are shaded) and bottom perturbation (h) contours (crests are straight lines, troughs
are dotted lines).

the BEE, sediment deposition should occur at the onshore flow regions while erosion
should occur at the rip current locations. This is fully corroborated by figure 13(b)
where the perturbation in bed level is plotted. Furthermore, this type of flow pattern
with onshore current at the shoals and offshore flow at the troughs is the one driven by
the increased wave breaking over the shoals in comparison with the troughs (Falqués
et al. 2000). The positive feedback is thus established leading to the formation of the
bars. This is essentially similar to transverse bar formation in the earlier model of
Caballeria et al. (2002).

The essentially new aspect in the present contribution is the saturation of the
growth. Looking at the final state in figure 13(c, d ), the gradient in potential stirring
has now not only a cross-shore component, but also a longshore component. This
is a consequence of the significant perturbations in water depth, D, but also of the
sediment stirring by the currents, v. Looking at the distribution of Dv · ∇Π on the
bottom panel, it is seen that it still causes deposition over the shoals and erosion at
the troughs. Thus, the saturation is reached not because the positive feedback between
flow and morphology owing to the bedsurf coupling ceases, but because a balance
between this effect and that from the downslope sediment transport is reached.

4.1.2. Down-current oriented bars

Figure 14 (a) shows the contour lines of the potential stirring at the initial
development of oblique bars (t = 8 day). The perturbation in the current, (u, v−V (x)),
where V (x) is the longshore current in the unperturbed state, is also shown. In
figure 14(b), the bottom perturbation is displayed. In the unperturbed state the
current runs alongshore and the gradient in Π is cross-shore directed. As a result, for
small amplitude bars the approximation

D v · ∇Π � D u
∂Π

∂x
+ D V

∂Π

∂y
(4.5)

holds to first order in the perturbations. As can be seen in figure 14(a), ∂Π/∂x >0 at
the inner surf zone and there is onshore flow over the crests, u < 0. Therefore, the first
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Figure 14. SVR transport, Hrms = 1.0 m, T = 6 s, θ = 25◦. (a, b) Initial state (day 8).
(c, d) Final state (day 14). The graph description is the same as figure 13, but vectors in
(a) show only the current perturbation.

term on the right-hand side of (4.5) is negative. Looking at the longshore gradient
in potential stirring it turns out that ∂Π/∂y < 0 somewhat downcurrent of the crests
and ∂Π/∂y > 0 somewhat downcurrent of the troughs. Although this is hard to see in
figure 14(a) where the total stirring is shown, it became apparent in plots where only
the perturbation was displayed. Then, since V > 0, this means that the second term
on the right-hand side is also negative at the crests and somewhat downcurrent
of them. The result is that −D v∇Π has its maximum (minimum) value somewhat
downcurrent of the crests (somewhat downcurrent of the troughs) and, according to
the BEE, this makes the bars grow and migrate downcurrent (figure 14b). The onshore
veering of the current at the crests which is essential for bar growth is a consequence
of both mass conservation and the increased breaking over the bars (Ribas et al.
2003). In figure 14(c) the total current, v, is shown instead of the perturbation. The
maximum value of −D v · ∇Π is located at the lee of the bar, indicating downcurrent
migration without growth (figure 14d ). Nevertheless, this is hard to ascertain just
looking at the figure and, moreover, the downslope transport has also some influence.

4.1.3. Up-current oriented bars

In general terms, the initial development of up-current oriented bars described in
the present modelling is consistent with the linear stability predictions of Ribas et al.
(2003). The use of the same sediment transport formulation and unbarred beach
profile implies the same structure of the potential stirring, Π , i.e. seaward decreasing.
Under such conditions, for zero or small-wave incidence angle, the beach system is
stable. For larger wave incidence angle, up-current oriented bars emerge with a shape
which is very similar to the linear mode.

Similarly to the case of downcurrent oriented bars, the explanation for the initial
formation of the bars can also be given in the present context on the basis of the
approximation in (4.5) which is now valid too. However, the gradient in potential
stirring has now an opposite direction (shoreward) (figure 15a). Therefore, the
formation of the bars also requires an opposite direction for the cross-shore flow
component, seaward on the bars and shoreward on the troughs, which is met only
for up-current oriented bars. Therefore, these are the emerging types of bar.
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Figure 15. CWS transport, Hrms = 1.0 m, T = 6 s, θ =25◦. (a, b) Initial state (day 5).
(c, d) Final state (day 85). The graph description is the same as figure 14.

Although figure 15(b) indicates the growth and downcurrent migration of bars,
looking at figure 15(a) it is difficult to see clearly the appropriate matching of the
cross-shore flow with the bar crests and troughs. Nevertheless, an analysis (not shown)
of the effect of the two terms of the right-hand side of (4.5) reveals that DV ∂Π/∂y

is the largest one, but only causes down-current migration. In contrast, Du∂Π/∂x is
smaller and produces growth of the bars along with a slight up-current migration.

The final state is displayed in figure 15(c, d ). From the accretion/erosion pattern,
the down-current migration is clearly apparent. Yet, again, it is hard to see from it
whether the saturation has been really achieved.

4.2. Global analysis of the saturation

Although previous morphodynamic modelling has occasionally predicted saturation
of the growth of the emerging features, the analysis of the physical mechanisms
leading to it was only based on indications given by local analysis at some particular
locations (see, for instance, Calvete & de Swart 2003) so that a thorough study was
lacking. To this end, we develop here a method to analyse the saturation of the bars
which is based on their dynamics on the whole domain. According to (4.1) or to
the approximated BEE (4.4), the tendency to the growth (or decay) of bars by the
bedflow/bedsurf couplings can be measured by

P = −
∫ Ly

0

∫ Lx

0

h∇ · (αv) dx dy � −
∫ Ly

0

∫ Lx

0

hD v · ∇Π dx dy

that will hereinafter be called the ‘production term’. Similarly, the ‘damping term’ due
to the diffusive effect of downslope sediment transport is defined as

� =

∫ Ly

0

∫ Lx

0

h∇ · (Γ ∇h) dx dy,

which is typically negative. The precise meaning of both terms can be illustrated by
considering the case of a topographic wave given by h(x, y, t) =ϕ(t)f (x, y −cmt), that
is, a wave which propagates alongshore with celerity cm, grows or decays according to
ϕ(t), but keeps a constant shape given by f (x, y). It is assumed that f is Ly periodic
with respect to y and that the topographic wave is confined within the longshore strip
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0 < x < Lx . Then, a measure of its amplitude is its L2-norm, defined as

‖h‖ =

(
1

LxLy

∫ Ly

0

∫ Lx

0

h2 dx dy

)1/2

. (4.6)

Because of the Ly periodicity of f, the time derivative of ‖h‖2 is:

d

dt
‖h‖2 =

2

LxLy

∫ Ly

0

∫ Lx

0

h
∂h

∂t
dx dy =

2

LxLy

ϕ′

ϕ
‖h‖2.

According to the last equation, in the case of an exponential growth or decay, ϕ(t) = eσ t

with σ ∈ �, the growth rate can be evaluated, independently of the migration, as:

σ =
1

‖h‖2

∫ Ly

0

∫ Lx

0

h
∂h

∂t
dx dy. (4.7)

Now, by substituting ∂h/∂t using (4.1) or (4.4) into (4.7), it is found that the growth
rate is directly related to the production and damping terms by

σ =
1

‖h‖2
(P + �). (4.8)

Coming back to the general case of the solutions of our model equations, the
instantaneous growth rate which is defined by (4.8) will decide the tendency to grow
or to decay. Notice that for the initial formation of the bars, P will be larger than −�

and they both will grow as ‖h‖2, since σ will be approximately constant according to
linear stability theory. Once the bars reach a significant amplitude, these trends will
no longer apply and saturation will occur when σ =0, i.e. P = −�. Notice that this
criterion is necessary but not sufficient, indeed, owing to the change of shape of the
bars which may be the result of interactions of various modes, this criterion may be
satisfied more than once during the evolution whilst the saturation is not reached.
Thus, this prohibits a prediction of the moment of saturation.

4.2.1. Transverse bars

To find out why the balance between those two tendencies occurs, it is illustrative
to analyse the trends in the production term, P, and the damping term, �, when
the bar amplitude measured by ‖h‖ increases. Figure 16 (a) shows P1/2 and (−�)1/2

as a function of ‖h‖. Both increase approximately linearly at the initial stages and
P is larger than −� as the bars grow significantly. Nevertheless, the increase in
−� with ‖h‖ becomes larger than the increase in P so that both curves cross each
other for ‖h‖ = 0.018 m. At this point, the bar growth stops and the final balance
is reached. This behaviour is clearly seen plotting the difference between production
and damping, P +�, as a function of bar amplitude, ‖h‖ (figure 16d ). This difference
is seen to increase from zero to a maximum at ‖h‖ = 0.012 m and then to decrease
to ‖h‖ = 0.018 m where it vanishes. This maximum of P + � characterized by a zero
derivative is retrieved in figure 17(a) when the curve of dP/d‖h‖ and d(−�)/d‖h‖
cross each other. Even beyond this point, both P and −� keep on increasing their
growth rate until the final equilibrium, although −� do it more vigorously.

4.2.2. Down-current bars

Comparison of figure 16(b) with figure 16(a) shows three significant differences
between down-current oriented bars and transverse bars. At the initial stage, the
production and damping terms are closer for down-current bars (i). At the final stage,
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Figure 16. Hrms = 1.0 m, T = 6 s. (a–c) Square root of the —, production and - - -, damping
terms as a function of ‖h‖. (d–f ) Difference between production and damping, (P + �) as
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Figure 17. SVR transport, Hrms = 1.0 m, T =6 s. Derivatives of —, dP/d‖h‖
and - - -, −d�/d‖h‖ as a function of ‖h‖. (a) θ =0◦, (b) θ = 25◦.

both terms moderate its growth and the instability source do it more drastically (ii) and
before reaching the final equilibrium the amplitude of bars decreases (iii). Claim (i)
is readily seen from the smaller initial slope of the P + � curve in figure 16(e)
in comparison to figure 16(d ). The final loop in the P + � curve in figure 16(e)
corroborates claim (iii). Claim (ii) follows by comparing figure 16(b) with figure 16(a),
but it becomes most apparent by looking at figure 17(b) where it is seen that dP/d‖h‖
start to decrease earlier than d(−�)/d‖h‖ and do it more strongly.

4.2.3. Up-current bars

As shown in figure 16(c, f ) it is found that the behaviour of this kind of bar is
more complicated than the others. This is because of the merging of individual bars
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Figure 18. CWS transport, Hrms =1.0 m, T = 6 s, θ = 25◦. Time evolution of (a) ‖h‖
and (b) h(10, 22.5).

occurring when bar amplitude is significant. It turns out that a first balance between
production and damping appears when ‖h‖ ≈ 0.05 m before day 7 (figures 18 and
16c, f ). This first saturation of the growth corresponds to the saturation of mode 1
described in § 3.2.3. Nevertheless, after day 7, ‖h‖ resumes its growth and keeps
growing until nearly 0.1 m at day 40 (figure 18a). This increase in ‖h‖ is not due to
an increase of bar amplitude which remains nearly constant (figure 18b), but to the
increase of cross-shore span because of bar merging. Figure 16(c, f ) illustrates this
strongly nonlinear behaviour with intriguing oscillations which begin with the first
(unsteady) balance between production and damping and end up with the balance
leading to the final saturated bars (mode 2 in § 3.2.3).

5. Discussion
5.1. Saturation of the growth

While the linear stability analysis shows the tendency of the morphodynamic system
to produce bars, it does not actually prove that such bars should be observed in
nature. It could be that if the nonlinearities are included, the model prediction for bar
amplitude would be exceedingly small. In such a case, the corresponding instability
mechanism could not be considered as the origin of the observed bars. Thus, the
present study can be considered as the first proof that shore-oblique bars can actually
emerge by self-organization of the coupling between waves, currents and morphology
via sediment transport. In the case of transverse bars, there was the earlier nonlinear
stability analysis by Caballeria et al. (2002), but that study had the shortcoming that
the model could not describe the saturation of the bar growth. This has now been
overcome and finite-amplitude shore-transverse and oblique sand bars have been
modelled for the first time.

The saturation is obtained as a balance between the down-slope sediment transport
and the positive feedback between flow and morphology which is responsible of
the initial formation of the bars. Both effects grow proportionally to bar amplitude
at the initial stage, the instability term being somewhat stronger. The process by
which equilibrium is eventually reached is complex and sometimes shows a number
of oscillations which reveals that the criterion for the saturation is not sufficient.
Essentially, two different scenarios are found for the saturation: (i) the damping
term accelerates its growth so that it eventually balances the instability source or
(ii) the instability source weakens so that it becomes balanced by the damping. This
means that saturation occurs either because the finite-amplitude shape of the bars
enhances downslope transport (i) or weakens the instability mechanism (ii). Notice
that for some experiments, there are still interactions between several modes even
if the measure of the amplitude (||h||) is already stabilized and the criterion of the
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global saturation is verified. This state could be interpreted as a dynamic equilibrium
state.

The final balance is very sensitive to the γ parameter of the down-slope transport.
Typically, formation of finally equilibrated bars takes place only for a relatively
narrow range of values. Values that are too large lead to stability of the alongshore
uniform topography while values that are too small lead to overflow of the numerical
model as the bars grow too much and their top tends to grow almost up to the
mean sea surface. The saturation could occur in the latter case owing to processes
related to very shallow water over the bars not described by the present model. The
values of γ leading to numerically stable computations are characterized by a ratio
of maximum bar amplitude to total mean water depth not larger than about 0.6.
Even if the model does not resolve the individual waves, this ratio corresponds to the
situation where the water depth at the troughs of the waves would be roughly zero.
Thus, this numerical limitation does not pose any physical limitation on the model.

5.2. Characteristics of the bars

In line with previous linear stability analysis (Ribas et al. 2003), the different types
of bar emerging in each situation depend mainly on the cross-shore profile of the
potential stirring, α/D, and on wave approach angle. In the case of an offshore decreas-
ing potential stirring (CWS transport), for zero to moderate wave angle, the along-
shore uniform morphology is stable. For quite oblique wave incidence (above θ ≈ 17◦),
up-current oriented bars emerge. The typical growth times are 2–4 days. The amplitude
ranges between 0.05 m and 0.5m, increases with Hrms (between 0.5 and 1.25 m) and
decreases with increasing bedslope transport coefficient, γ . The longshore spacing
increases with wave angle and has a complex behaviour with γ , ranging between 60
to 130 m. For oblique wave incidence the bars migrate down-current with a celerity
between 30 and 70 mday−1 that increases drastically with wave angle from 17◦ to
35◦. The bar dynamics are coupled to a meandering of the longshore current with
offshore flow over the bars and onshore flow at the troughs. The magnitude of the
cross-shore component is about 0.3m s−1 while the longshore component is about
0.9m s−1 for waves of Hrms = 1 m. The angle of the bars with the shore-normal ranges
from βm = 42◦ to 67◦.

In the case of an offshore increasing potential stirring across the inner surf zone
up to a maximum and an offshore decreasing potential stirring beyond this point
(SVR transport), transverse bars form in the case of normal wave incidence. The bars
have an amplitude between 0.08 and 0.19 m which increases with wave height. The
longshore spacing is about 30 m, slightly increasing with Hrms. The cross-shore length
increases too with Hrms and ranges between 9 and 12 m. The existence of the bars is
clearly linked to a horizontal circulation with jet-like rip currents in the troughs up
to 0.52 m s−1. A typical growth time is a couple of days. Their formation mechanism
is similar to that described in Caballeria et al. (2002). Differences arise due only to
a different description of hydrodynamics which consider irregular waves, but do not
account for wave refraction by the growing bars. Anyhow, the mean flow has the
same structure, i.e. onshore (offshore) directed on the bars (at the troughs), and this
is the essential characteristic that makes the bars grow.

With the same structure of the potential stirring that led to the formation of
transverse bars, but in the case of oblique wave incidence, downcurrent oriented bars
emerge. The amplitude is about 0.30m and the longshore spacing increases with wave
height from 19 to 43 m. The angle of the bars with the shore-normal increases too
from βm = 35◦ to 60◦. The typical growth time is about 2 days. The bars migrate
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downcurrent at celerities which range between 100 and 260 mday−1 and increase
with wave height, wave incidence angle and wave period. They are also linked to a
meandering of the longshore current, this time with onshore flow over the bars and
offshore flow at the troughs. The magnitude of the cross-shore flow component is
about 0.3 m s−1 with a longshore component of 1 m s−1.

5.3. Initial characteristics versus finite-amplitude characteristics

An important limitation of the explanations of pattern formation by self-organization
is that they are sometimes based on linear stability analysis. The question then arises
as to whether the shape, length scale and migration celerities predicted by linear
stability analysis actually applies to the finite-amplitude features which should be
comparable to the corresponding patterns in nature. The present study sheds some
light on this issue and it turns out that the answer is sometimes ‘yes’ and sometimes
‘no’. For instance, the final longshore spacing of transverse bars and down-current
oriented bars is similar to the initial one, whereas it is significantly larger for up-
current oriented bars, 72 m compared to 50 m for the default parameter set. Both for
up-current and down-current oriented bars, the initial and final migration celerities are
different. For up-current bars, the final celerity is smaller than the initial, 43 mday−1

compared to 71 m day−1. In contrast, for down-current bars it is the other way around,
a final celerity of 167 m day−1 which is larger than the initial one, 150 m day−1 (for the
default parameter set). Regarding the shape, linear stability can only predict sinusoidal
patterns where crests and troughs are symmetrical. Consistently, onshore and offshore
flow with the same intensity is equally distributed along the coast. This is clearly not
so for the finite-amplitude features. For instance, transverse bars show an asymmetry
of crests and troughs which is different close to the shoreline or far from it. Close to
the shoreline, the crests are narrow and the troughs wider, whereas offshore the shoals
are wider and the rip channels narrower. Very remarkable is the asymmetry between
offshore flow (rip currents) and onshore flow. The former is strong and narrow
whereas the latter is wider and weaker in accordance to common observations on
rip-current systems (Short 1999). In the case of oblique wave incidence where the bars
migrate down-current, the longshore sections of the bars have the typical asymmetry,
the lee being steeper than the stoss. In all cases, this final asymmetric behaviour of
the bars and of the current is crucial since we saw the final spatial structure of the
topography and of the flow is responsible for the saturation of the growth. Indeed, in
each case of non-saturation (when overflow occurs) we noticed the bars had kept its
linear structure.

The overall shape in plan view of the transverse and up-current bars does not differ
much between the initial and the final stages. However, the initial shape of down-
current bars turns out to be very linear whereas for large amplitude the down-current
bars tend to curve backward with their offshore tip veering up-current. Thus, the
final conclusion is that small-amplitude analysis can reliably predict only the order
of magnitude of the longshore spacing and migration celerity along with the overall
shape, but not the details of it.

5.4. Comparison with observations

Model results can be compared with experimental data only in a very limited way.
First, the model is at present very idealized and the main purpose was just to show
that transverse/oblique bars of finite amplitude could emerge from morphodynamic
instabilities of the surf zone and showed a realistic nonlinear dynamics. Secondly,
although this type of bar is often observed in nature, field data sets on their
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generation involving morphological evolution along with hydrodynamics are scarce
and incomplete. Unfortunately, a systematic field study such as van Enckevort et al.
(2004) for crescentic bars is lacking for transverse/oblique bars. Thus, we will use here
just an overall comparison between model results and observed bars and it will be
sufficient for our purposes to refer to the systematic summary of existing observations
in Ribas et al. (2003). Additional information not included in that paper can be found
in Lafon et al. (2002) and Castelle (2004).

Shore-attached bars in nature can be both perpendicular or oblique to the coastline.
According to Ribas et al. (2003), the most common orientation in the latter case is
down-current, but the up-current orientation can also exist. In this respect, the model
is successful in describing the formation of the three types of bar. However, the
conditions on the potential stirring necessary to produce the different types cannot be
checked through the field data description in the existing literature. It is nevertheless
likely that the most common situation (for intermediate beach states where the
infragravity wave energy is not dominant in the inner surf zone) is an offshore
increasing stirring function through the inner surf zone for which the model predicts
either transverse bars or down-current oriented bars according to wave angle. The
shape of the bars in the model is overall representative of the ensemble of observed
shapes for such bars. The model reproduces the observed asymmetry, the down-
current flank being steeper than the up-current flank. The longshore spacings of
shore-attached bar systems in the model range between 30 and 75 m, i.e. within the
range of the observed spacings which is between 12 and 760 m (Ribas et al. 2003;
Castelle 2004). It seems that the spacing is correlated with the width of the surf
zone and the large scatter in observed spacings is probably related to differences in
surf zone width. Because of the use of Rayleigh distributed waves it is difficult to
define the surf zone width in the model, but we can define it as the distance from the
shore to the location of maximum wave dissipation which is about 15 m. Thus, the
ratio spacing/surf zone width would be about 2–5, which is comparable to the values
reported in the literature. The typical growth times of a couple of days in the model
are not in disagreement with the scarce data which point to a formation time ranging
between one and a few days. The currents associated with the presence of the bars are
also consistent with observations. In the case of transverse bars, strong and narrow
rip currents form in the troughs and wide and weaker onshore flow over the shoals.
The onshore (offshore) veering of the longshore current over the bars (troughs) is
also very typical of down-current oriented bars. Less well known is the observed
flow pattern in the case of up-current oriented bars. In this case, the meandering
of the longshore current in the model can be compared to the observed one in
the case of storm-driven currents over the shoreface-connected ridges on the inner
continental shelf and they show correspondence (Trowbridge 1995). As in nature,
bars migrate down-current in the model. The computed celerities range between 30
and 70 m day−1 for up-current oriented bars and between 100 and 260 m day−1 for
down-current oriented bars. In contrast, observed celerities reported in the literature
range from a few metres up to 40 mday−1 (Lafon et al. 2002; Ribas et al. 2003) so
that it seems that the model tends to overpredict the migration speed. This, however,
deserves further attention. First of all, the measured migration speeds are very often
an average over several days, weeks or even months, during which the wave energy
and direction may change substantially and may not be representative of a sustained
forcing with constant wave conditions. For instance, Lafon et al. (2002) reported a
mean southerly migration of the bar system along the French Atlantic coast of about
2.4mday−1 during the summer of 1989. However, there are periods of either very low
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wave energy or nearly normal wave incidence. Thus, this value is not representative of
waves incident all the time with a large angle with the shore-normal as in the model.
For example, the measurements taken with a much higher frequency by Konicki &
Holman (2000) gave celerities up to 40 m day−1. A second aspect is that bar celerity
depends largely on its size, both in the model and in nature (Falqués et al. 1996),
the larger the bars, the more slowly they move. The down-current bars in the model
have quite a small spacing (∼ 30 m, at the lower bound of the range of observed
spacings) and this probably causes their large celerity. In contrast, the up-current bars
which are larger have celerities that are roughly consistent with those observed by
Konicki & Holman (2000).

5.5. Model simplifications

The increased (decreased) wave breaking over the shoals (troughs) causes gradients
in set-up and mean flows. When a longshore current is present, the alongshore non-
uniform topography also triggers gradients and meandering of the current. This is the
main feedback mechanism of the morphology onto the hydrodynamics in the model.
The morphodynamic loop is closed when a sediment transport parameterization is
added to this framework. The two parameterizations used in the present study are
suitable for the sediment transport driven by the longshore current and/or rip-current
circulation and consistently disregard the weaker cross-shore transport due solely to
the waves. Importantly, a preference for down-slope transport is included. These
are the essential ingredients of the model that are shown to lead to the formation
of self-organized shore-transverse or oblique bars of finite amplitude that compare
reasonably well with observations.

Some aspects, however, deserve further attention. Wave refraction by the alongshore
non-uniform topography has been considered only in a simplified way. Although
Caballeria et al. (2002) pointed out that it was essential for the onshore current
over the crests of the transverse bars which in turn is essential for its growth, our
computations have shown that this current may exist even without wave refraction.
Apart from refraction, the essential difference between that model and the present
one is that irregular waves are now considered. Therefore, the importance of wave
refraction could probably be restricted to the case of regular waves. It is nevertheless
advised that future work should include a description of wave refraction over the bars
which is suitable for finite-amplitude topographic features. This would allow us to
check its influence which is expected, however, to be limited. This description should
also include wave diffraction which has not been accounted for in the present model.
While refraction tends to concentrate wave energy over the shoals, diffraction tends
to diffuse it away. Thus, both effects are expected to oppose each other and their
analysis is an interesting issue for future research.

Finally, the down-slope sediment transport is not yet very well known and a rather
crude description has been adopted here. The sensitivity of the model to the slope
coefficient, γ , has, however, pointed out that down-slope transport may be crucial
for the saturation of bar growth and for finite-amplitude bar properties. Thus, more
attention should be paid in future to gravitational down-slope transport.

6. Conclusions
The differential wave breaking over shoals and troughs (bedsurf effect) along with

the gradients and meandering caused on the longshore current (bedflow effect) may
cause the growth of self-organized shore-attached transverse or oblique bars on an
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unbarred beach. Oblique bars in the model may be either down-current oriented or
up-current oriented depending on the cross-shore profile of the ratio stirring to water
depth. This is largely in line with previous linear stability studies, but the new aspect
is now that the gravitational down-slope sediment transport may stop the growth at
realistic bar amplitudes. A global method for analysing the saturation of bar growth
is developed and it is found that the final balance between the effects of that transport
and the bedsurf/bedflow instabilities occurs because the finite-amplitude shape of the
bars either enhances downslope transport or weakens the instability mechanism. The
onset of the saturation allows us to explore the nonlinear dynamics of the bars which
include merging of individual bars, asymmetry of the longshore shape, occurrence of
jet-like rip currents and oscillatory behaviour (dynamic equilibrium). The final overall
shape of the bars in plan view is similar to the initial one, although some details may
be substantially different. The final and the initial longshore spacings and migration
celerities are of the same order of magnitude, but differences up to a factor of 2 may
arise.
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